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Since our first goal is to describe the electric field produced by an atom
or molecule, it will help to make some general observations about the
electrostatic field external to any small system of charges.

10.2 The moments of a charge distribution

An atom or molecule consists of some electric charges occupying a small
volume, perhaps a few cubic angstroms (10739 m3) of space. We are
interested in the electric field outside that volume, which arises from
this rather complicated charge distribution. We shall be particularly con-
cerned with the field far away from the source, by which we mean far
away compared with the size of the source itself. What features of the
charge structure mainly determine the field at remote points? To answer
this, let’s look at some arbitrary distribution of charges and see how we
might go about computing the field at a point outside it. The discussion
in this and the following section generalizes our earlier discussion of
dipoles in Section 2.7.

Figure 10.3 shows a charge distribution of some sort located in the
neighborhood of the origin of coordinates. It might be a molecule con-
sisting of several positive nuclei and quite a large number of electrons. In
any case we shall suppose it is described by a given charge density func-
tion p(x,y,z); p is negative where the electrons are and positive where
the nuclei are. To find the electric field at distant points we can begin by
computing the potential of the charge distribution. To illustrate, let’s take
some point A out on the z axis. (Since we are not assuming any special
symmetry in the charge distribution, there is nothing special about the z
axis.) Let r be the distance of A from the origin. The electric potential at
A, denoted by ¢4, is obtained as usual by adding the contributions from
all elements of the charge distribution:

1 / p(x.y.2)dv

1= dreg R

(10.4)

In the integrand, dv' is an element of volume within the charge distribu-
tion, p(x',y,7) is the charge density there, and R in the denominator is
the distance from A to this particular charge element. The integration is
carried out in the coordinates x’, y', 7/, of course, and is extended over all
the region containing charge. We can express R in terms of r and the dis-
tance r’ from the origin to the charge element. Using the law of cosines
with 6 the angle between r’ and the axis on which A lies, we have

R= (> +r?—2r' cos0)'/?. (10.5)

With this substitution for R, the integral becomes

Qs =

a 4 e

/ pdV' (P + r? = 2rr cos0) /2. (10.6)

Figure 10.3.
Calculation of the potential, at a point A, of a
molecular charge distribution.
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Now we want to take advantage of the fact that, for a distant point like
A, r' is much smaller than r for all parts of the charge distribution.
This suggests that we should expand the square root in Eq. (10.5) in pow-
ers of /' /r. Writing

1 P22 172
(7 + 7% = 2r cos0) 712 = - [1 + (—2 - = cos@>:| (10.7)
r r r
and using the expansion (1 +8)71/2 =1 — §/2 +38%2/8 — - - -, we get,

after collecting together terms of the same power in 7’ /r, the following:

(r2 + 72 — 2 cos 9)_1/2

1 ’ /N 2 3 2 0—1 N\ 3
=—|:1+r—c059+(r—> w—i—(’)[(L) } ;
r r r 2 r
(10.8)
where the last term here indicates terms of order at least (+'/ r)3. These

are very small if ¥/ < r. Now, r is a constant in the integration, so we can
take it outside and write the prescription for the potential at A as follows:

1 1 / 1 / /
A = e - pdv +r_2 r cosO pdv (10.9)
~——— ~—
Ko K,
1 ,(3cos?6—1)
+ﬁ/r v+
K>

Each of the integrals above, Ky, K1, K>, and so on, has a value that
depends only on the structure of the charge distribution, not on the dis-
tance to point A. Hence the potential for all points along the z axis can
be written as a power series in 1/r with constant coefficients:

1 Ky K K>
op = —++5+ | (10.10)
dmwey | r r r

This power series is called the multipole expansion of the potential,
although we have calculated it only for a point on the z axis here. To fin-
ish the problem we would have to get the potential ¢ at all other points, in
order to calculate the electric field as —grad ¢. We have gone far enough,
though, to bring out the essential point: The behavior of the potential at
large distances from the source will be dominated by the first term in the
above series whose coefficient is not zero.

Let us look at these coefficients more closely. The coefficient Ky is
f o dv', which is simply the total charge in the distribution. If we have
equal amounts of positive and negative charge, as in a neutral molecule,
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Ky will be zero. For a singly ionized molecule, Ky will have the value e.
If Ky is not zero, then no matter how large K, K>, etc., may be, if we go
out to a sufficiently large distance, the term Ky /r will win out. Beyond
that, the potential will approach that of a point charge at the origin and
so will the field. This is hardly surprising.

Suppose we have a neutral molecule, so that Ky is equal to zero. Our
interest now shifts to the second term, with coefficient K;=
[ ¥ cosf pdv'. Since r' cos6 is simply Z/, this term measures the rel-
ative displacement, in the direction toward A, of the positive and neg-
ative charge. It has a nonzero value for the distributions sketched in
Fig. 10.4, where the densities of positive and negative charge have been
indicated separately. In fact, all the distributions shown have approxi-
mately the same value of Kj. Furthermore — and this is a crucial point
— if any charge distribution is neutral, the value of K is independent
of the position chosen as origin. That is, if we replace 7' by 7’ + z,
in effect shifting the origin, the value of the integral is not changed:
JE@ +zppad = [ZpdV + z [ pdV,and the latter integral is always
zero for a neutral distribution.

Evidently, if Ky = 0 and K; # 0, the potential along the z axis will
vary asymptotically (that is, with ever-closer approximation as we go out
to larger distances) as 1/r2. We recognize this dependence on r from the
dipole discussion in Section 2.7. We expect the electric field strength to
behave asymptotically like 1/73, in contrast with the 1/r> dependence
of the field from a point charge. Of course, we have discussed only the
potential on the z axis. We will return to the question of the exact form
of the field after getting a general view of the situation.

If Koy and K are both zero, and K> is not, the potential will behave
like 1/7° at large distances, and the field strength will fall off with the
inverse fourth power of the distance. Figure 10.5 shows a charge distri-
bution for which Ky and K are both zero (and would be zero no matter
what direction we had chosen for the z axis), while K> is not zero.

The quantities Koy, Ki, K»,...are related to what are called the
moments of the charge distribution. Using this language, we call Kj,
which is simply the net charge, the monopole moment, or monopole
strength. K| is one component of the dipole moment of the distribution.
The dipole moment has the dimensions (charge) x (displacement); it is
a vector, and our K is its z component. The third constant K> is related
to the quadrupole moment of the distribution, the next to the octupole
moment, and so on. The quadrupole moment is not a vector, but a ten-
sor. The charge distribution shown in Fig. 10.5 has a nonzero quadrupole
moment. You can quickly show that K» = 3ea?, where a is the distance
from each charge to the origin.

Figure 10.4.
Some charge distributions with Ky = 0, K; # 0. That is, each has net
charge zero, but nonzero dipole moment.
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Figure 10.5.
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For this distribution of charge, Ky = K; = 0, but
K, # 0. ltis a distribution with nonzero
quadrupole moment.

Example (Sphere monopole) The external potential due to a spherical shell
with uniform surface charge density is Q/4mwegr. Therefore, its only nonzero
moment is the monopole moment. That is, all of the K; terms except K in
Eq. (10.10) are zero. Using the integral forms given in Eq. (10.9), verify that
K1 and K> are zero.

Solution  For a surface charge density, the p dv' in the K; integrals turns into
odad = o(2rRsin®)(Rd0). Since we're trying to show that the integrals are
zero, the various constants in o da’ don’t matter. Only the angular dependence,
sin @ d6, is relevant. So we have

g

T 1
K o</ cos@sin@d@:—icosze =0,
0

0
b4

T
K2<></(3c0529—1)sin6d9=(—cos39+cos9) =0, (10.11)
0

0

as desired. Intuitively, it is clear from symmetry that K is zero; for every bit of
charge with height 7/, there is a corresponding bit of charge with height —z’. But
it isn’t as intuitively obvious that K> vanishes.

As mentioned above, K| and K7 are only components of the complete dipole
vector and quadrupole tensor. But the other components can likewise be shown
to equal zero, as we know they must. If you want to calculate the general form
of the complete quadrupole tensor, one way is to write the R in Eq. (10.5) as
R=+Vx—x)2+ (—y)2 + (z— 2)2, and then perform a Taylor expansion as
we did above. See Problem 10.6.

The advantage to us of describing a charge distribution by this hier-
archy of moments is that it singles out just those features of the charge
distribution that determine the field at a great distance. If we were con-
cerned only with the field in the immediate neighborhood of the distri-
bution, it would be a fruitless exercise. For our main task, understanding
what goes on in a dielectric, it turns out that only the monopole strength
(the net charge) and the dipole strength of the molecular building blocks
are important. We can ignore all other moments. And if the building
blocks are neutral, we have only their dipole moments to consider.

10.3 The potential and field of a dipole

The dipole contribution to the potential at the point A, at distance r from
the origin, is given by (1/4meor?) [ r' cos@ p dv'. We can write ' cos 6,
which is just the projection of r’ on the direction toward A, as t - r’. Thus
we can write the potential without reference to any arbitrary axis as

A

= /f'-r’,odv’: ! ./r’pdv’ (10.12)
4 egr? 4megr? ’ ’

which will serve to give the potential at any point with location rf. The
integral on the right in Eq. (10.12) is the dipole moment of the charge
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distribution. It is a vector, obviously, with the dimensions (charge) x
(distance). We shall denote the dipole moment vector by p:

p= / road (10.13)

The dipole moment p = ¢¢ in Section 2.7 is a special case of this result.
If we have two point charges +-¢ located at positions z = ££/2, then p is
nonzero only at these two points. So the integral in Eq. (10.13) becomes
a discrete sum: p = q(z£/2) + (—q)(—z£/2) = (q€)z, which agrees with
the p = ¢f result in Eq. (2.35). The dipole vector points in the direction
from the negative charge to the positive charge.

Using the dipole moment p, we can rewrite Eq. (10.12) as
r-p

P 10.14
4megr? ( )

¢(r) =

The electric field is the negative gradient of this potential. To see what
the dipole field is like, locate a dipole p at the origin, pointing in the z
direction (Fig. 10.6). With this arrangement,

0
— Peos (10.15)

o 471’601‘2

Figure 10.6.
The electric field of a dipole, indicated by some
field lines.
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in agreement with the result in Eq. (2.35)." The potential and the field
are, of course, symmetrical around the z axis. Let’s work with Cartesian
coordinates in the xz plane, where cos 8 = z/(x* + z2)!/2. In that plane,

pz

= 10.16
dmeg(x? 4 22)3/2 (1010
The components of the electric field are readily derived:
a 3 3psin6 cos 6
E =% _ it _ 2PSInucos (10.17)
Ox  dmwep(x? + 72)5/2 4 egrd
B — o p 37 1 _ p(3cos?H — 1)
ST 9z Ame L2+ (2422 dmeprd

The dipole field can be described more simply in the polar coordi-
nates r and 6. Let E, be the component of E in the direction of r, and let
Ey be the component perpendicular to T in the direction of increasing 6.
You can show in Problem 10.4 that Eq. (10.17) implies

E =

cosf, Ey = sinf, (10.18)
2w er’
in agreement with the result in Eq. (2.36). Alternatively, you can quickly
derive Eq. (10.18) directly by working in polar coordinates and taking the
negative gradient of the potential given by Eq. (10.15). This is the route
we took in Section 2.7.

Proceeding out in any direction from the dipole, we find the electric
field strength falling off as 1/73, as we had anticipated. Along the z axis
the field is parallel to the dipole moment p, with magnitude p/2meor;
that s, it has the value p/2m€or>. In the equatorial plane the field points
antiparallel to p and has the value —p/47€yr>. This field may remind you
of the field in the setup with a point charge over a conducting plane, with
its image charge, from Section 3.4. That of course is just the two-charge
dipole we discussed in Section 2.7. In Fig. 10.7 we show the field of this
pair of charges, mainly to emphasize that the field near the charges is
not a dipole field. This charge distribution has many multipole moments,
indeed infinitely many, so it is only the far field at distances r >> s that
can be represented as a dipole field.

To generate a complete dipole field right into the origin we would
have to let s shrink to zero while increasing ¢ without limit so as to keep
p = gs finite. This highly singular abstraction is not very interesting.
We know that our molecular charge distribution will have complicated
near fields, so we could not easily represent the near region in any case.
Fortunately we shall not need to.

! Note that the angle 6 here has a different meaning from the angle 0 in Fig. 10.3 and
Egs. (10.5)—(10.9), where it indicated the position of a point in the charge distribution.
The present 6 indicates the position of a given point (at which we want to calculate ¢
and E) with respect to the dipole direction.
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Figure 10.7.

The electric field of a pair of equal and opposite
point charges approximates the field of a dipole
for distances large compared with the
separation s.

10.4 The torque and the force on a dipole in an

external field

Suppose two charges, ¢ and —g, are mechanically connected so that s, the
distance between them, is fixed. You may think of the charges as stuck
on the end of a short nonconducting rod of length s. We shall call this
object a dipole. Its dipole moment p is simply gs. Let us put the dipole
in an external electric field, that is, the field from some other source.
The field of the dipole itself does not concern us now. Consider first a
uniform electric field, as in Fig. 10.8(a). The positive end of the dipole
is pulled toward the right, the negative end toward the left, by a force of
strength gE. The net force on the object is zero, and so is the torque, in
this position.

A dipole that makes some angle 6 with the field direction, as in
Fig. 10.8(b), obviously experiences a torque. In general, the torque N
around an axis through some chosen origin is r x F, where F is the force
applied at a position r relative to the origin. Taking the origin in the
center of the dipole, so that r = 5/2, we have

N=rxF;+(—r) xF_. (10.19)
N is a vector perpendicular to the figure, and its magnitude is given by
N= %quin@ n %quinQ — sgEsin® = pEsin6.  (10.20)

This can be written simply as

N=pxE (10.21)

When the total force on the dipole is zero, as it is in this case, the torque is
independent of the choice of origin (as you should verify), which there-
fore need not be specified.
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Figure 10.8.

(a) A dipole in a uniform field. (b) The torque on
the dipole is N = p x E; the vector N points into
the page. (c) The work done in turning the
dipole from an orientation parallel to the field to
the orientation shown is pE(1 — cos ).

The orientation of the dipole in Fig. 10.8(a) has the lowest energy.
Work has to be done to rotate it into any other position. Let us calculate
the work required to rotate the dipole from a position parallel to the field,
through some angle 6y, as shown in Fig. 10.8(c). Rotation through an
infinitesimal angle df requires an amount of work N d6. Thus the total
work done is

6o 6o
Ndo = / pEsin6 do = pE(1 — cos bp). (10.22)
0 0

This makes sense, because each charge moves a distance (s/2)(1 —
cos 6p) against the field. The force is gE, so the work done on each charge
is (gE)(s/2)(1 —cos p). Doubling this gives the result in Eq. (10.22). To
reverse the dipole, turning it end over end, corresponds to 6y = 7 and
requires an amount of work equal to 2pE.

The net force on the dipole in any uniform field is zero, obviously,
regardless of its orientation. In a nonuniform field the forces on the two
ends of the dipole will generally not be exactly equal and opposite, and
there will be a net force on the object. A simple example is a dipole
in the field of a point charge Q. If the dipole is oriented radially, as in
Fig. 10.9(a), with the positive end nearer the positive charge Q, the net
force will be outward, and its magnitude will be

0
F= —g)——. 10.23
@ dmenr? o dmen(r + 5)? ( )
For s <« r, we need only evaluate this to first order in s/r:
1 1
F= qu - 2%qQ2 - 2
dmegr (1 + f) dmegr 1+ 75
2
o 99 (B2 e (10.24)
4 egr? r 2megr?
In terms of the dipole moment p, this is simply
149
= . 10.25
2 60)‘3 ( )

With the dipole at right angles to the field, as in Fig. 10.9(b), there is
also a force. Now the forces on the two ends, though equal in magnitude,
are not exactly opposite in direction. In this case there is a net upward
force.

It is not hard to work out a general formula for the force on a dipole
in a nonuniform electric field. The force depends essentially on the gra-
dients of the various components of the field. In general, the x component
of the force on a dipole of moment p is

F,=p-gradE; (10.26)

with corresponding formulas for Fy and F7; see Problem 10.7. All three
components can be collected into the concise statement, F = (p - V)E.
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3.4 E MULTIPOLE EXPANSION

3.4.1 ® Approximate Potentials at Large Distances

If you are very far away from a localized charge distribution, it “looks” like a point
charge, and the potential is—to good approximation—(1/4mwey) Q/r, where Q is
the total charge. We have often used this as a check on formulas for V. But what
if Q is zero? You might reply that the potential is then approximately zero, and of
course, you're right, in a sense (indeed, the potential at large r is pretty small even
if Q is not zero). But we’re looking for something a bit more informative than that.

Example 3.10. A (physical) electric dipole consists of two equal and opposite
charges (£¢) separated by a distance d. Find the approximate potential at points
far from the dipole.

Solution
Let~_ be the distance from —q and 2 the distance from +¢ (Fig. 3.26). Then

1
V) = (i - i) ,
drey \ 2y 2_

and (from the law of cosines)

d d?
’in =r’4+(d/2)*Frdcost =r’ (1 F —cosb + 4—2>
r r

We’re interested in the régime r > d, so the third term is negligible, and the
binomial expansion yields

Thus

FIGURE 3.26
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and hence

1 gdcosf
-

V(r) = (3.90)

drey 1

The potential of a dipole goes like 1/r2 at large r; as we might have anticipated,
it falls off more rapidly than the potential of a point charge. If we put together
a pair of equal and opposite dipoles to make a quadrupole, the potential goes
like 1/r3; for back-to-back quadrupoles (an octopole), it goes like 1/r*; and so
on. Figure 3.27 summarizes this hierarchy; for completeness I have included the
electric monopole (point charge), whose potential, of course, goes like 1/r.

+ _ - +
+, - + terr
- + - +
Monopole Dipole Quadrupole Octopole
(V~1/r) (V~1/r?) (V~1rd (V~1r"
FIGURE 3.27

Example 3.10 pertains to a very special charge configuration. I propose now to
develop a systematic expansion for the potential of any localized charge distribu-
tion, in powers of 1/r. Figure 3.28 defines the relevant variables; the potential at
r is given by

V() = L/lp(r’) dt’. (3.91)
drey J 2

Using the law of cosines,

N\ 2 ’
22 =r?4+ ") = 2rr cosa = r? |:1 + (V—) -2 (r_) cosa] ,
r r

where « is the angle between r and r’. Thus

2=r+1+e¢, (3.92)

FIGURE 3.28
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<r/> <r/ )
e=|— — —2cosa ).
r r

For points well outside the charge distribution, € is much less than 1, and this
invites a binomial expansion:

with

1o 1 1 3, 5
- =—(1 2= l—ce+ 22— =+ ), 3.93
PSR r< T3 Tt T (3.93)

or, in terms of r, r/, and «:
11 1\ (F 3P\ (r 2
-—=—|1-= L r——2cosa + = L r——2005a
2 r 2\r r 8\ r r
5 r 3 r 5 3+
—— | = — —2cos
16 \ r r “
1 r’ \? [(3cosa — 1
=—[1+|—)(cosax)+ | — _
r r r 2
(r’>3 <50053a—3cosa> :|
+1|— _— 4. .
r 2

In the last step, I have collected together like powers of (r’/r); surprisingly, their
coefficients (the terms in parentheses) are Legendre polynomials! The remarkable
result'® is that

| PNy
S Z <_) P,(cos ). (3.94)
2 r =0 r

Substituting this back into Eq. 3.91, and noting that r is a constant, as far as the
integration is concerned, I conclude that

J R |
V(r) = Z = / (r")' P,(cosa)p(r) dt’, (3.95)
n=0

dreg e~ rn

or, more explicitly,

1 1 1
Vi) =—1|- /p(r’)dr/+—/r/cosa,o(r’)dr’
dmey L r r?

+ ris/(r/)z (% cos® o — %) p()dt' + .. :| - (3.96)

16This suggests a second way of defining the Legendre polynomials (the first being Rodrigues’ for-
mula); 1/% is called the generating function for Legendre polynomials.
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This is the desired result—the multipole expansion of V in powers of 1/r.
The first term (n = 0) is the monopole contribution (it goes like 1/r); the sec-
ond (n = 1) is the dipole (it goes like 1/r?); the third is quadrupole; the fourth
octopole; and so on. Remember that « is the angle between r and r’, so the inte-
grals depend on the direction to the field point. If you are interested in the poten-
tial along the 7’ axis (or—putting it the other way around—if you orient your r’
coordinates so the 7’ axis lies along r), then « is the usual polar angle 6.

As it stands, Eq. 3.95 is exact, but it is useful primarily as an approxima-
tion scheme: the lowest nonzero term in the expansion provides the approximate
potential at large r, and the successive terms tell us how to improve the approxi-
mation if greater precision is required.

Problem 3.27 A sphere of radius R, centered at the origin, carries charge density
R .
p(r,0) = k—z(R — 2r)sin6,
r

where k is a constant, and r, 6 are the usual spherical coordinates. Find the approx-
imate potential for points on the z axis, far from the sphere.

Problem 3.28 A circular ring in the xy plane (radius R, centered at the origin) carries
a uniform line charge A. Find the first three terms (n = 0, 1, 2) in the multipole
expansion for V (r, 6).

3.4.2 @ The Monopole and Dipole Terms

Ordinarily, the multipole expansion is dominated (at large r) by the monopole
term:

g, (3.97)

Vinon (1) =
( ) 47T6() r

where Q = [ pdr is the total charge of the configuration. This is just what we
expect for the approximate potential at large distances from the charge. For a point
charge at the origin, Vion 1s the exact potential, not merely a first approximation
at large r; in this case, all the higher multipoles vanish.

If the total charge is zero, the dominant term in the potential will be the dipole
(unless, of course, it also vanishes):

1 1
Viin(r) = —— — | r’cos r)dr’.
ip(1) = 7 /r ap(r)
Since « is the angle between r’ and r (Fig. 3.28),
r' cosa =T-r,

and the dipole potential can be written more succinctly:

Viin (X) = Llf‘ r'p)dt
W drre 12 P '
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This integral (which does not depend on r) is called the dipole moment of the
distribution:

pz/r/p(r/)dr/, (3.98)

and the dipole contribution to the potential simplifies to

1 p-r
Vaip(r) = T 2

(3.99)

The dipole moment is determined by the geometry (size, shape, and density)
of the charge distribution. Equation 3.98 translates in the usual way (Sect. 2.1.4)
for point, line, and surface charges. Thus, the dipole moment of a collection of
point charges is

P=) qr. (3.100)
i=1

For a physical dipole (equal and opposite charges, £¢),
p=gqr, —gr_=q@, —r_)=qd, (3.101)

where d is the vector from the negative charge to the positive one (Fig. 3.29).

Is this consistent with what we got in Ex. 3.10? Yes: If you put Eq. 3.101 into
Eq. 3.99, you recover Eq. 3.90. Notice, however, that this is only the approximate
potential of the physical dipole—evidently there are higher multipole contribu-
tions. Of course, as you go farther and farther away, Vy;, becomes a better and
better approximation, since the higher terms die off more rapidly with increas-
ing r. By the same token, at a fixed r the dipole approximation improves as you
shrink the separation d. To construct a perfect (point) dipole whose potential is
given exactly by Eq. 3.99, you’d have to let d approach zero. Unfortunately, you
then lose the dipole term foo, unless you simultaneously arrange for g to go to in-
finity! A physical dipole becomes a pure dipole, then, in the rather artificial limit
d — 0, g — oo, with the product gd = p held fixed. When someone uses the
word “dipole,” you can’t always tell whether they mean a physical dipole (with

FIGURE 3.29
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—-q +q
+q -q
FIGURE 3.30

finite separation between the charges) or an ideal (point) dipole. If in doubt, as-
sume that d is small enough (compared to r) that you can safely apply Eq. 3.99.

Dipole moments are vectors, and they add accordingly: if you have two
dipoles, p; and p,, the total dipole moment is p; 4+ p». For instance, with four
charges at the corners of a square, as shown in Fig. 3.30, the net dipole moment is
zero. You can see this by combining the charges in pairs (vertically, | + 1+ =0,
or horizontally, - + < = 0) or by adding up the four contributions individually,
using Eq. 3.100. This is a quadrupole, as 1 indicated earlier, and its potential is
dominated by the quadrupole term in the multipole expansion.

Problem 3.29 Four particles (one of charge ¢, one of charge 3¢, and two of charge
—2q) are placed as shown in Fig. 3.31, each a distance a from the origin. Find a
simple approximate formula for the potential, valid at points far from the origin.
(Express your answer in spherical coordinates.)

Z
3q
a
a a
—2q u —2q y
x q
FIGURE 3.31

Problem 3.30 In Ex. 3.9, we derived the exact potential for a spherical shell of
radius R, which carries a surface charge o = k cos 6.

(a) Calculate the dipole moment of this charge distribution.

(b) Find the approximate potential, at points far from the sphere, and compare the
exact answer (Eq. 3.87). What can you conclude about the higher multipoles?

Problem 3.31 For the dipole in Ex. 3.10, expand 1/24 to order (d/ )3, and use this
to determine the quadrupole and octopole terms in the potential.
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3.4.3 W Origin of Coordinates in Multipole Expansions

I mentioned earlier that a point charge at the origin constitutes a “pure” monopole.
If it is not at the origin, it’s no longer a pure monopole. For instance, the charge
in Fig. 3.32 has a dipole moment p = gdy, and a corresponding dipole term in
its potential. The monopole potential (1/4mwep)g/r is not quite correct for this
configuration; rather, the exact potential is (1/4m€g)g /2. The multipole expansion
is, remember, a series in inverse powers of r (the distance to the origin), and when
we expand 1/2, we get all powers, not just the first.

So moving the origin (or, what amounts to the same thing, moving the charge)
can radically alter a multipole expansion. The monopole moment Q does not
change, since the total charge is obviously independent of the coordinate system.
(In Fig. 3.32, the monopole term was unaffected when we moved g away from
the origin—it’s just that it was no longer the whole story: a dipole term—and for
that matter all higher poles—appeared as well.) Ordinarily, the dipole moment
does change when you shift the origin, but there is an important exception: If the
total charge is zero, then the dipole moment is independent of the choice of origin.
For suppose we displace the origin by an amount a (Fig. 3.33). The new dipole
moment is then

13=/l_"p(l")df’Z/(r/—a)p(l’/)df/

= /r’p(r/)dr’ —a/p(l‘/)dT, =p-— Qa

dart’

FIGURE 3.32 FIGURE 3.33

In particular, if Q = 0, then p = p. So if someone asks for the dipole moment
in Fig. 3.34(a), you can answer with confidence “gd,” but if you’re asked for the
dipole moment in Fig. 3.34(b), the appropriate response would be “With respect
to what origin?”

-q
a a
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——>o
-q q q 9 q

(@) (b)
FIGURE 3.34
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Problem 3.32 Two point charges, 3¢ and —g, are separated by a distance a. For
each of the arrangements in Fig. 3.35, find (i) the monopole moment, (ii) the dipole
moment, and (iii) the approximate potential (in spherical coordinates) at large r
(include both the monopole and dipole contributions).
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FIGURE 3.35

3.4.4 W The Electric Field of a Dipole

So far we have worked only with potentials. Now I would like to calculate the
electric field of a (perfect) dipole. If we choose coordinates so that p is at the origin
and points in the z direction (Fig. 3.36), then the potential at r, 6 is (Eq. 3.99):

F-p  pcosf

Vaip(r, 8) = (3.102)

Amegr?  Amegr?’

To get the field, we take the negative gradient of V:

£ — aV. 2pcos

T 9r T dmegrd’
1oV psinf

CT 7000 T dmepr?)
1 v

? 7 rsing ap

Thus
Egip(r.0) = —L—(2cos 6 £+ sin6 6). (3.103)
4megr3
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FIGURE 3.36

This formula makes explicit reference to a particular coordinate system (spher-
ical) and assumes a particular orientation for p (along z). It can be recast in a
coordinate-free form, analogous to the potential in Eq. 3.99—see Prob. 3.36.

Notice that the dipole field falls off as the inverse cube of r; the monopole field
(Q/4megr®)F goes as the inverse square, of course. Quadrupole fields go like
1/r*, octopole like 1/r%, and so on. (This merely reflects the fact that monopole
potentials fall off like 1/r, dipole like 1/r2, quadrupole like 1/73, and so on—the
gradient introduces another factor of 1/r.)

Figure 3.37(a) shows the field lines of a “pure” dipole (Eq. 3.103). For com-
parison, I have also sketched the field lines for a “physical” dipole, in Fig. 3.37(b).
Notice how similar the two pictures become if you blot out the central region; up
close, however, they are entirely different. Only for points » >> d does Eq. 3.103
represent a valid approximation to the field of a physical dipole. As I mentioned
earlier, this régime can be reached either by going to large r or by squeezing the
charges very close together.!”

Z Z

(a) Field of a “pure” dipole (b) Field of a “physical” dipole
FIGURE 3.37

7Even in the limit, there remains an infinitesimal region at the origin where the field of a physical
dipole points in the “wrong” direction, as you can see by “walking” down the z axis in Fig. 3.35(b). If
you want to explore this subtle and important point, work Prob. 3.48.
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Problem 2.28 Use Eq. 2.29 to calculate the potential inside a uniformly charged
solid sphere of radius R and total charge ¢. Compare your answer to Prob. 2.21.

Problem 2.29 Check that Eq. 2.29 satisfies Poisson’s equation, by applying the
Laplacian and using Eq. 1.102.

2.3.5 B Boundary Conditions

In the typical electrostatic problem you are given a source charge distribution
p, and you want to find the electric field E it produces. Unless the symmetry
of the problem allows a solution by Gauss’s law, it is generally to your advan-
tage to calculate the potential first, as an intermediate step. These are the three
fundamental quantities of electrostatics: p, E, and V. We have, in the course
of our discussion, derived all six formulas interrelating them. These equations
are neatly summarized in Fig. 2.35. We began with just two experimental obser-
vations: (1) the principle of superposition—a broad general rule applying to all
electromagnetic forces, and (2) Coulomb’s law—the fundamental law of electro-
statics. From these, all else followed.

You may have noticed, in studying Exs. 2.5 and 2.6, or working problems such
as 2.7, 2.11, and 2.16, that the electric field always undergoes a discontinuity
when you cross a surface charge o. In fact, it is a simple matter to find the amount
by which E changes at such a boundary. Suppose we draw a wafer-thin Gaussian
pillbox, extending just barely over the edge in each direction (Fig. 2.36). Gauss’s
law says that

1 1
fE'da= —Qene = —0A,
€0 €0

S

where A is the area of the pillbox lid. (If o varies from point to point or the surface
is curved, we must pick A to be extremely small.) Now, the sides of the pillbox

FIGURE 2.35



